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History

Infancy

• Besag (1986) and Geman and Geman (1984): seminal work on

the restoration of pictures degraded by noise;

• ‘low level’ tasks, e.g. de-noise, sharpen, segment, or classify;

overview in Mardia and Kanji (1993).

Growing up

• 1990s: shift towards ‘high level’ tasks of describing image content;

• early work includes Molina and Ripley (1989), Ripley and

Sutherland (1990), Baddeley and Van Lieshout (1992, 1993),

Grenander and Miller (1994).

Maturity

• challenges arising from data explosion;

• intermediate approach building on tessellation models, e.g.

Nicholls (1998), Møller and Skare (2001), Kluszczyński et al. (2007),

Van Lieshout (2013), Kieu et al. (2013).
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Random fields: Example - Lattice gas

Non-overlapping black and white patches against a grey background.

Realisation of a lattice gas model. Black represents colour label ’1’, grey

’0’, and white ’2’.
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Random fields: Example - Potts

Patches of five different colours, no specific background.

Realisation of a Potts model with five labels.
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Random fields: Definition

Pixel array S = (s1, . . . , sm).

Label set Λ (categorical or related to intensity values).

A random field on S with values in L is a random vector

X = (X1, . . . , Xm),

Xi being the label in Λ assigned to pixel si.

The distribution of X is given by the joint pdf

P{X1 = x1, . . . , Xm = xm}; x = (x1, . . . , xm) ∈ ΛS .
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Markov random field

Let ∼ be a symmetric, reflexive relation on S.

The random field X is said to be Markov with respect to ∼ if for all

i = 1, . . . ,m the conditional distribution

P{Xi = xi | Xj = xj , j 6= i} = P{Xi = xi | Xj = xj , si ∼ sj , j 6= i}

depends only on xi and the labels at those pixels sj that share an edge

with si, provided P{Xj = xj , j 6= i} > 0.

Besag, 1974.

Note: Markov property has considerable computational advantages.
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Potts model (Ising, 1924; Potts, 1951)

Set Λ = {1, . . . , L}, β > 0, and

P{X1 = x1, . . . , Xm = xm} ∝
∏

si∼sj ,i<j

exp [−β1{xi 6= xj}] .

Then

P{Xi = xi | Xj = xj , j 6= i} =
exp

[

−β
∑

sj∼si
1{xi 6= xj}

]

∑

l∈Λ exp
[

−β
∑

sj∼si,j 6=i 1{l 6= xj}
] .

Note:

• β < 0: positive association;

• β = 0: independent labelling.
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Image segmentation (analysing dirty pictures)

Model: Given the ‘true’ image x = (x1, . . . , xm), the observed pixel

values yi ∈ R are i.i.d. with pdf g(yi|xi).

Goal: Reconstruct x from y = (y1, . . . , ym).
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Nosebleed approach: MLE

The likelihood reads

f(y|x) =
m
∏

i=1

g(yi|xi)

and hence

x̂i = argmax{g(yi|xi) : xi ∈ Λ}.

For Gaussian white noise, x̂i is the label closest to yi.

Conclusion: ignoring spatial coherence leads to rough solutions that are

sensitive to noise.
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Image segmentation - Hierarchical approach

Idea: Use a Markov prior πX to regularise the solutions towards

smoother, more spatially coherent ones.

Besag, 1986; Geman and Geman, 1984.

The posterior pdf

f(x|y) ∝ f(y|x)πX(x) = πX(x)

m
∏

i=1

g(yi|xi)

leads to the MAP classifier

x̂ = argmax{f(y|x)πX(x) : x ∈ ΛS}

= argmax{log f(y|x) + log πX(x) : x ∈ ΛS}.

Interpretation:

• The term log f(y|x) ensures goodness of fit to data;

• log πX for a Potts or lattice gas model favours spatial coherence.
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Iterated Conditional Modes (Besag, 1986)

1. Start with a reasonable initial guess, e.g. the MLE.

2. Scan the pixel grid in an arbitrary prefixed order. At pixel i, update

its value taking the values of its neighbours into account:

x̃i = argmax {g(yi|xi)πX(xi|xj , j 6= i) : xi ∈ Λ}.

3. Repeat step 2 until convergence or for a predetermined number of

scans.

Properties:

• ICM converges to a local maximum of the posterior;

• typically in very few cycles;

• for a Markov prior, the calculations are local, hence quick;

• since the prior cannot be expected to reflect the global data

appearance, ICM tends to look better than the global optimum.
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Results

From left to right: Truth, distortion by white noise (σ = 10), MLE and MAP

classifiers (Potts with β = 1.5).

• For β = 0, MAP and MLE agree.

• For β → ∞, MAP results in a single colour image, ICM carries out a

recursive majority vote (data used to break ties).
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Remarks and extensions

In case of unknown parameters, the joint distribution is of the form

forward model[ data | process, parameters ] × prior[ process |

parameters ],

optionally complemented by a hyper prior distribution on the model

parameters.

This framework is extremely flexible. Inference is based on the posterior

distribution of the process and/or the parameters conditional on the

observations, e.g.

• by Monte Carlo methods;

• a point estimate or optimal reconstruction of the process;

• histograms of any marginal of interest.

Banerjee, Carlin and Gelfand, 2015.
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Object processes: Example - Penetrable spheres

Particles of different colour do not overlap.
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Object processes: Example - Strauss

Light balls tend to avoid being centred in darker ones.

Realisation of a Strauss density

exp

[

∑

i

(

log(β) + log(γ)
∑

j<i

1{||di − dj || ≤ mj}

)]

, β > 0, γ ∈ [0, 1].
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Object processes: Definition

Bounded, open set ∅ 6= D ⊆ R2 with border ∂D.

Polish space Q for object attributes equipped with probability

distribution Q.

Examples:

• simple geometric shapes (Baddeley and Van Lieshout (1992), Van

Lieshout (1994, 1995));

• deformable templates (Amit et al. (1991), Hansen et al. (2002), Hurn

(1998), Mardia et al. (1997), Pievatolo and Green (1998), Rue and

Hurn (1999), Rue and Husby (1998));

• ensembles of simple shapes (Lacoste et al. (2005), Ortner et al.

(2007)).
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Point process distribution

Realisations x = {x1, . . . , xn}, where n ∈ N0 and xi = (di,mi) ∈ D̄ ×Q,

i = 1, . . . , n.

The distribution of X is given by its pdf f :

• the probability of n points is

e−ℓ(D)

n!

∫

D̄×Q

· · ·

∫

D̄×Q

f({x1, . . . , xn}) dℓ×Q(x1) · · · dℓ×Q(xn);

• conditionally on having n points, they follow pdf (w.r.t. (ℓ×Q)n)

f({x1, . . . , xn})
∫

D̄×Q
· · ·
∫

D̄×Q
f({z1, . . . , zn}) dℓ×Q(z1) · · · dℓ×Q(zn)

,

writing ℓ for Lebesgue measure.
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Markov object process

Let ∼ be a symmetric, reflexive relation on D̄ ×Q.

The object process X is said to be Markov with respect to ∼ if

• f is hereditary: f(x) > 0 implies f(y) > 0 for all y ⊆ x;

• for all u ∈ (D̄ ×Q) \ x, the conditional intensity

λ(u | x) :=
f(x ∪ {u})

f(x)
,

depends only on u and {xi ∈ x \ {u} : u ∼ xi}, provided f(x) > 0.

Ripley and Kelly, 1977.

Note: Markov property has considerable computational advantages.
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Penetrable spheres (Widom and Rowlinson, 1970)

Set Q = {1, 2}, Q(1) = Q(2) = 1/2, β > 0, and consider

f(x1 ∪ x2) ∝ (2β)n(x1)+n(x2) 1{d(x1,x2) > R}.

Then, provided f(x1 ∪ x2) > 0, e.g.

λ((u, 1)|x1,x2) = 2β 1{d((u, 1),x2) > R}.

Notes:

• Assign points of Poisson(2β)-process i.i.d. to each type wp 1/2,

conditionally on respecting hard core distance R;

• The marginal distributions of Xi, i = 1, 2, are area-interaction

processes (Baddeley and Van Lieshout (1995), Häggström et al.

(1999)).
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Object recognition

Forward model:

• object configuration x determines ‘true’ image θ
(x)
i , si ∈ S;

• given x, the observed pixel values yi ∈ R are i.i.d. with pdf g(yi|θ
(x)
i ).

Goal: Reconstruct x from y = (y1, . . . , ym).
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Object recognition - Hierarchical approach

Idea: Use a Markov overlapping object prior πX to discourage multiple

response, e.g. the Strauss pdf

πX(x) ∝ βn(x)γr(x)

for β > 0, γ ∈ [0, 1], n(·) cardinality, r(·) number of overlapping pairs.

Molina and Ripley, 1989; Baddeley and Van Lieshout, 1992.

The posterior pdf

f(x|y) ∝ f(y|x)πX(x) = πX(x)
m
∏

i=1

g(yi|θ
(x)
i )

leads to the MAP classifier

x̂ = argmax{log f(y|x) + log πX(x)}.
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Steepest ascent algorithm

1. Start with a reasonable initial guess x(0), e.g. the MLE.

2. Given x(k−1), determine

a = max
u∈D̄×Q

{

log
f(y|x(k−1) ∪ {u})πX(x(k−1) ∪ {u})

f(y|x(k−1))πX(x(k−1))

}

and

b = max
xi∈x(k−1)

{

log
f(y|x(k−1) \ {xi})πX(x(k−1) \ {xi})

f(y|x(k−1))πX(x(k−1))

}

.

3. If max{a, b} ≥ w, implement the best change to get x(k).

4. Repeat step 2 until convergence.

Baddeley and Van Lieshout, 1992.
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Results: counting pellets

Model: discs (radius 4), blurred by 3× 3 linear filter (weights 4, 2, 1) and

distorted by white noise (σ2 = 83.1).

From left to right: Data, MLE and MAP classifiers (w = 0, Strauss prior with

log β = log γ = −1000).

Flamingo’s (INRIA, equipe ARIANA)
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Remarks and extensions

• Markov object processes cannot model depth;

• nor non-symmetric neighbour relations.

In such cases, use finite sequential spatial processes (Van Lieshout

2006a, 2006b) with realisations

~x = (x1, . . . , xn), xi ∈ D̄ ×Q

and drop the symmetry requirement on ∼. Useful in motion tracking.
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Intermediate level modelling

Idea: Regard an image scene as a (coloured) tessellation. Thus,

• global aspects of the image are captured;

• no need to model all objects in the image.

Left: STIT (Nagel and Weiss, 2003); Right: Voronoi and Delaunay.
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Poisson line tessellation: Definition

A Poisson point process has intensity λ > 0 w.r.t. dpdθ. Equivalently, the

heads of the perpendiculars form a Poisson point process in R2 with

intensity function

λ/||(x, y)||.
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Poisson line tessellation - Properties

The Poisson line process is

• well-defined: Any bounded set B is hit by finitely many lines;

• isotropic and consistent.

• independent: Conditionally on n lines hitting B, they are i.i.d.

Line transects: The intersection with a fixed line ℓ

• is a Poisson point process on l with rate 2λ,

• the intersection angles are i.i.d. with pdf

sin θ/2, θ ∈ [0, π).

George, 1987.
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Polygonal Markov field: Definition

Note: Many line tessellations yield convex polygonal cells.

Idea: To obtain other shapes, draw polygonal contours γ on a Poisson

line process using each line only once (hence no X- or T-shapes) and

give weight proportional to

exp [−2 length(γ)] , Arak, 1982.
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Polygonal Markov field: Properties

The Arak model AD on D ⊂ R2 is

• isotropic;

• consistent: for D′ ⊆ D, AΦD
∩D′ =d AΦD′

;

• admits two equally likely colourings such that no adjacent regions

share the same colour;

• there is a dynamic representation that allows for easy simulation.

Line transects: The intersection with a fixed line ℓ is a Poisson point

process on l with rate 2λ and

• the two feasible colourings are equally likely,

• the intersection angles are i.i.d. with pdf sin θ/2, θ ∈ [0, π).

Markov: the conditional behaviour in an open bounded domain

depends on the exterior configuration only through arbitrarily close

neighbourhoods of the boundary.

Arak and Surgailis, 1989.
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Foreground/background segmentation

Hierarchical approach: regularise towards short lengths. Then the MAP

classifier is

γ̂ = argmax {−β length(γ)−
m
∑

i=1

|yi − θ(γ)i|}

where θ(γ) is the segmentation image defined by γ.

Kluszczyński, Van Lieshout and Schreiber, 2007.
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Remarks and extensions

• More than two colours;

• Draw polygonal contours on fixed finite collection of lines T

(Schreiber and Van Lieshout, 2010; Van Lieshout, 2013);

Note: The discrete Arak mosaic is dual to a Markov random field.

Realisations with three colours. Left: no V-junctions; Right: no X-junctions.
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Network extraction

Goal: Reconstruct the network of tracks that run between adjacent

fields.
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Network extraction - Hierarchical approach

Reference model: Arak mosaic with four colours.

Regularised goodness of fit:

β
∑

e∈E(γ)

[f(e)− c(e)] ,

with β > 0, and

• f(e): integrated absolute gradient flux along edge e:

f(e) =

∫

e

|∇(~y)1(p)n1(p) +∇(~y)2(p)n2(p)|dp

where (n1, n2) is the unit normal to e;

• c(e): twice the number of segments along the edge to discourage

spurious edges.

Van Lieshout, 2013.
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Results

Left: extracted network; Right: gradient image. T : lines of big gradient.

Stochastic geometric modelsfor image analysis – p. 34/34


	History
	Random fields: Example - Lattice gas
	Random fields: Example - Potts
	Random fields: Definition
	Markov random field
	Potts model (Ising, 1924; Potts, 1951)
	Image segmentation (analysing dirty pictures)
	Nosebleed approach: MLE
	Image segmentation - Hierarchical approach
	Iterated Conditional Modes (Besag, 1986)
	Results
	Remarks and extensions
	Object processes: Example - Penetrable spheres
	Object processes: Example - Strauss
	Object processes: Definition
	Point process distribution
	Markov object process
	Penetrable spheres (Widom and Rowlinson, 1970)
	Object recognition
	Object recognition - Hierarchical approach
	Steepest ascent algorithm
	Results: counting pellets
	Remarks and extensions
	Intermediate level modelling
	Poisson line tessellation: Definition
	Poisson line tessellation - Properties
	Polygonal Markov field: Definition
	Polygonal Markov field: Properties
	Foreground/background segmentation
	Remarks and extensions
	Network extraction
	Network extraction - Hierarchical approach
	Results

