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~ History

Infancy

Besag (1986) and Geman and Geman (1984): seminal work on
the restoration of pictures degraded by noise;

‘low level” tasks, e.g. de-noise, sharpen, segment, or classify;
overview in Mardia and Kanji (1993).

Growing up

1990s: shift towards ‘high level’ tasks of describing image content;

early work includes Molina and Ripley (1989), Ripley and
Sutherland (1990), Baddeley and Van Lieshout (1992, 1993),
Grenander and Miller (1994).

Maturity

challenges arising from data explosion;

intermediate approach building on fessellation models, e.g.
Nicholls (1998), Mgller and Skare (2001), Kluszczynski et al. (2007),
Van Lieshout (2013), Kieu ef al. (2013).
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‘ Random fields: Example - Lattfice gas

Non-overlapping black and white patches against a grey background.

Realisation of a lattice gas model. Black represents colour label "1, grey
‘0, and white "2,
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‘ Random fields: Example - Poftfs

Pafches of five different colours, no specific background.

Realisation of a Potts model with five labels.
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‘ Random fields: Definition

Pixel array S = (s1,...,8m).
Label set A (categorical or related to infensity values).

A random field on S with values in L is a random vector
X =(X1,...,Xm),

X, being the label in A assigned to pixel s;.

The distribution of X is given by the joint pdf

P{Xi=21,...,Xm =2m}; x=(x1,...,2m) € A".
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‘ Markov random field

Let ~ be a symmmetric, reflexive relation on S.

The random field X is said to be Markov with respect to ~ if for all
i =1,...,m the conditional distribution

P{Xi=uoi | Xj=w;,) #i} =P{Xi = o | X;j = zj,si ~ 55,7 # 1}

depends only on x; and the labels at those pixels s; that share an edge
with s;, provided P{ X, = z;,j # i} > 0.
Besag, 1974.

Note: Markov property has considerable computational advantages.
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‘ Potts model (Ising, 1924, Pofts, 1951)

SetA={1,...,L},8>0,and

P{Xi=z1,...,Xm=2m} x H exp [—B1{x; # x;}] .

SiNSj 7/L<.7

Then

exp [—5 Zsjwsi {x; # 5’33}}

P{Xi=uai| X; =a;,j #i} = -
Sieaexp =B, oy, g UL # 25}

Note:
* B < 0: positive association;

* B =0: iIndependent labelling.
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‘ Image segmentation (analysing dirty pictures)

Model: Given the ‘true’ image x = (z1, ..., xm ). The observed pixel
values y; € R are i.i.d. with pdf g(y;|z;).

Goal: Reconstruct x fromy = (y1,...,ym).
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‘ Nosebleed approach: MLE

The likelihood reads

m

Flyle) =] 9(wila:)

=1
and hence
z;, = argmax{g(y:|x:) : z; € A}.

For Gaussian white noise, z; is the label closest to y;.

Conclusion: ignoring spatial coherence leads to rough solutions that are
sensifive to noise.
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‘ Image segmentation - Hierarchical approach

Idea: Use a Markov prior mx to regularise the solutions towards
smoother, more spatially coherent ones.
Besag, 1986; Geman and Geman, 1984.

The posterior pdf

m

f(xly) o fyle)mx (x) = mx (x) | [ 9(yilzs)

=1

leads to the MAP classifier

& = argmox{f(y|lz)rx(z):z e A°}
= argmax{log f(y|z) + logmx (z) : z € A°}.

Interpretation:
The tferm log f(y|x) ensures goodness of fit to data;

log wx for a Potts or lattice gas model favours spatial coherence.

m | O >

Stochastic geometric modelsfor image analysis — p. 10/34



‘ lterated Conditional Modes (Besag, 1986)

1. Start with a reasonable inifial guess, e.g. the MLE.

2. Scan the pixel grid in an arbitrary prefixed order. At pixel i, update
its value taking the values of its neighlbours info account:

T; = argmax {g(yi|xi)7rx(x7;|a:j,j ?é Z) i A}

3. Repeat step 2 until convergence or for a predetermined number of
scans.

Properties:

ICM converges to a local maximum of the posterior;
typically in very few cycles;
for a Markov prior, the calculations are local, hence quick;

since the prior cannot be expected to reflect the global data
appearance, ICM tends to look better than the global optimum.
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From left to right: Truth, distortion by white noise (¢ = 10), MLE and MAP
classifiers (Potts with g = 1.5).

* For g = 0, MAP and MLE agree.

* For g — oo, MAP results in a single colour image, ICM carries ouf a
recursive majority vote (data used o break ties).
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\ Remarks and extensions

In case of unknown parameters, the joint distribution is of the form

forward model( dafa | process, parameters ) x prior( process |
parameters ),

optionally complemented by a hyper prior distribution on the model
parameters.

This framework is extremely flexible. Inference is based on the posterior
distribution of the process and/or the parameters conditional on the
observations, e.g.

by Monte Carlo methods;
a point estimate or optimal reconsfruction of the process;
histograms of any marginal of inferest.

Banerjee, Carlin and Gelfand, 2015.
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‘ Object processes: Example - Penefrable spheres

Particles of different colour do not overlap.
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‘ Object processes: Example - Sfrauss

Light balls fend to avoid being centred in darker ones.

% :

Realisation of a Strauss density

exp [Z <log(6) +1log(7) > 1{[|di — dy| < mﬁ)] , B>0,v€]0,1].

J<1
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‘ Object processes: Definitfion

Bounded, open set () £ D C R? with border dD.

Polish space @ for object attributes equipped with probability
distribution Q.

Examples:

simple geometric shapes (Baddeley and Van Lieshout (1992), Van
Lieshout (1994, 1995));

deformable templates (Amit ef al. (1991), Hansen ef al. (2002), Hurn
(1998), Mardia et al. (1997), Pievatolo and Green (1998), Rue and
Hurn (1999), Rue and Husby (1998));

ensembles of simple shapes (Lacoste ef al. (2005), Ortner et al.
(2007)).
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‘ Point process distribution

Realisations x = {z1,...,z,}. wheren € No and z; = (d;,m;) € D x Q,

1=1,...,n.

The distfribution of X is given by its pdf f:
the probability of n points is

e_‘e(

n!

D)
/ / F@r, .. zn}) de x Q1) -+ dl x Q(an);
DxQ DxQ

conditionally on having n points, they follow pdf (w.r.t. (£ x Q)™)

f({xlv s 733“})
fDxQ T fDxQ f({Zl, . ,Zn}) dl x @(21) oo dl X Q(Zn)7

writing ¢ for Lelbbesgue measure.
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‘ Markov object process

Let ~ be a symmetric, reflexive relation on D x Q.

The object process X is said fo be Markov with respect to ~ if
f is hereditary: f(x) > 0implies f(y) > 0 forally C x;

forallu € (D x Q) \ x, the conditional intensity

Mu | x) = f (Xft(JX{)u}) |

depends only on v and {x; € x \ {u} : u ~ x;}, provided f(x) > 0.

Ripley and Kelly, 1977.

Note: Markov property has considerable computational advantages.
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‘ Penetfrable spheres (Widom and Rowlinson, 1970)

SetQ ={1,2},Q(1) =Q(2) =1/2, 8 > 0, and consider

F(x1 Uxz) o (28)"00Fm02) 1 £(x;, x2) > R}

Then, provided f(x1 Uxz) > 0, e.Q.

A(u, 1)|x1,%2) = 28 1{d((u, 1), x2) > R}.

Notes:

Assign points of Poisson(253)-process i.i.d. o each type wp 1/2,
conditionally on respecting hard core distance R;

The marginal distributions of X;, : = 1, 2, are area-interaction

processes (Baddeley and Van Lieshout (1995), Haggstrom ef al.
(1999)).

I« O >
Stochastic geometric modelsfor image analysis — p. 19/34



‘ Object recognition

Forward model:
* object configuration z defermines ‘true’ image 01(:”), si € 5.

» given z, the observed pixel values y; € R are i.i.d. with pdf g(y:|6\™).

Goal: Reconstruct x fromy = (y1,...,Ym).
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‘ Object recognition - Hierarchical approach

Idea: Use a Markov overlapping object prior mx to discourage multiple
response, e.g. the Strauss pdf

Tx (x) x Bn(w)vr(w)

for 86 > 0,~ € [0, 1], n(-) cardinality, »(-) numiber of overlapping pairs.
Molina and Ripley, 1989; Baddeley and Van Lieshout, 1992,

The posterior pdf

m

f(@ly) o< flylz)mx (z) = mx () [ 9(wil6:7)

=1

leads to the MAP classifier

& = argmax{log f(y|x) + log mx (x)}.
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‘ Steepest ascent algorithm

1. Start with a reasonable initial guess =%, e.g. the MLE.

2. Given z*~Y, determine

f(ylz* D U {uPmx (25D U {u})
{log F(ylz® D )mx (@) }

a = max
ueDXQ

and

b= max {log f(y\ag(k—l) \ {xi})ﬁX(w(k_l) \ 17i}) } :

f(ylath=t)mx (atk=1)

z;ex(k—1)

3. If max{a, b} > w, iImplement the best change to get z*.
4. Repeat step 2 until convergence.

Baddeley and Van Lieshout, 1992,

m | O >

Stochastic geometric modelsfor image analysis — p. 22/34



‘ Resulfs: counting pellets

Model: discs (radius 4), blurred by 3 x 3 linear filter (weights 4, 2, 1) and
distorted by white noise (¢* = 83.1).

From left to right: Data, MLE and MAP classifiers (w = 0, Strauss prior with
log B = log vy = —1000).

W  Flomingo’s INRIA, equipe ARIANA
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‘ Remarks and extensions

Markov object processes cannot model depth;

nor non-symmeftric neighbour relations.

In such cases, use finite sequential spatial processes (Van Lieshout
200640, 2006b) with realisations

X=(x1,...,2n), ;€D xXQ

and drop the symmetry requirement on ~. Useful in motion tracking.
B K |
w - o »
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‘ Infermediate level moaelling

Idea: Regard an image scene as a (coloured) tessellation. Thus,
* global aspects of the image are captured;

* no need to model all objects in the image.

Left: STIT (Nagel and Weiss, 2003); Right: Voronoi and Delaunay.
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‘ Poisson line tessellation: Definition

A Poisson point process has infensity A > 0 w.r.t. dpdf. EQuivalently, the
heads of the perpendiculars form a Poisson point process in R? with
intensity function

M, y)l-
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‘ Poisson line tessellatfion - Properfies

The Poisson line process is
well-defined: Any bounded set B is hit by finitely many lines;
isotropic and consistent,

independent: Conditionally on n lines hitting B, they are i.i.d.

Line fransects: The intersection with a fixed line ¢
is a Poisson point process on [ with rate 2,

the intersection angles are i.i.d. with pdf
sinf/2, 0 €[0,m).

George, 1987.
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\ Polygonal Markov field: Definifion

Note: Many line tessellations yield convex polygonal cells.

Idea: To obtain other shapes, draw polygonal contours v on a Poisson
line process using each line only once (hence no X- or T-shapes) and
give weight proportional to

exp [—2 length(7)], Arak, 1982,

AN
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‘ Polygonal Markov field: Properties

The Arak model Ap on D C R? is

isotropic;

consistent: for D' C D, Ae, N D' =* As_,;
admits two equally likely colourings such that no adjacent regions
share the same colour;

there is a dynamic representation that allows for easy simulation.

Line tfransects: The infersection with a fixed line ¢ is a Poisson point
process on [ with rate 2\ and

the fwo feasible colourings are equally likely,
the intersection angles are i.i.d. with pdf sin6/2, 6 € [0, 7).

Markov: the condifional behaviour in an open bounded domain
depends on the exterior configuration only through arbitrarily close
neighbbourhoods of the boundary.

Arak and Surgailis, 1989.
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A Foreground/background segmentation

Hierarchical approach: regularise towards short lengths. Then the MAP
classifier is

4 = argmax {—g length(y) — Z [yi = 0(7)il}

where 0(v) is the segmentation image defined by ~.

Kluszczynski, Van Lieshout and Schreiber, 2007.
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“ Remarks and extensions

* More than two colours;

* Draw polygonal contours on fixed finite collection of lines T
(Schreiber and Van Lieshout, 2010; Van Lieshout, 2013);

Note: The discrete Arak mosaic is dual to a Markov random field.

Realisations with three colours. Left: no V-junctions; Right: no X-junctions.
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‘ Network extraction

Goal: Reconstruct the network of tfracks that run between adjacent
fields.
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‘ Neftwork extraction - Hierarchical approach

Reference model: Arak mosaic with four colours.

Regularised goodness of fit:

with g > 0, and

f(e): infegrated absolute gradient flux along edge e:

f(e) = / V(&)1 ()1 (p) + V() (p)na(p)dp

where (n1,n2) is the unit normal 1o e;

c(e): Twice the number of segments along the edge fo discourage
spurious edges.

Van Lieshout, 2013.
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Left: extracted network; Right: gradient image. 7 lines of big gradient.
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