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ML & medicine

Where we stand: what’s changed in recent years and some
snapshots of recent work in prediction and causal learning

Where we’re going: how will things look in the future? Why
aren’t we further ahead already?



Where we stand:
the high-dimensional revolution

e Last ~15 years, major developments in understanding of:

* Regularization and high-dimensional learning
_ _ . Dramatic change
* Highly flexible, data-adaptive models in how we view
= high-dimensional
data and complex
 Hardware and associated libraries models

* Computationally feasible learning schemes




Where we stand: scale up of
phenotyping/data acquisition
Up to 30,000 people

Follow-up 30 years or more
Deep phenotyping

s& * Multiple modalities
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Two kinds of questions

Two broad kinds of questions/tasks:

(1) “Predictive”. Can be framed in terms of minimizing some kind of expected
loss, typically supervised learning set-up.

Examples: diagnosis, prognosis, “theranostics”, some pre-processing...

(2) “Causal”. Goal is to guide new interventions.

Examples: identifying new therapies, aetiology, preventative factors ...

Depends on not only the question (“will treatment A work for patient X”) but
the data context

Current/emerging biotechnological and data science tools offer promise of
major changes in both areas



Prediction in medicine



Prediction in medicine

Many medical tasks are fundamentally statistical decision problems,
including:

* Diagnosis
* Prognosis

e Theranostics

With appropriate data, all can be viewed as supervised learning
problems, with different Xs and Ys



Why prediction in medicine is different

 Medical applications of supervised learning have some key features:
* Heterogeneity (within study)
* Batch- and population-type effects and generalizability
* Multi-modality
* High-dimensionality, weak first-principles information
e Bayes’ risk not known in advance — always an empirical question

e Ethical questions
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Joint Lasso (Dondelinger & SM, Biostatistics, 2018),
augments classical lasso penalty with between-group
terms that allow for joint learning
Can offer gains in prediction, also quite different
sparsity patterns
AD N EMCI LMCI §
= L. *i il b
™ |
S o, [

o
1
=3

alidated RMSE
o
X

C
o
o
8




High-dimensional, multi-modal data

» Scalable Bayesian regression (Perrakis & SM, JCGS, to appear), allows for multiple
modes with high total dimension

 Example from multi-modal Alzheimers’ prediction
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Risk estimation in practice
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New Results

Diagnostic value of blood gene expression-based classifiers as exemplified for

acute myeloid leukemia

Stefanie Warnat-Herresthal, Konstantinos Perrakis, Bernd Taschler, Matthias Becker, Lea Seep, Kevin Bassler,
Patrick Guenther, Jonas Schulte-Schrepping, Kathrin Klee, Thomas Ulas, Torsten Haferlach, Sach Mukherjee,
Joachim L. Schultze

Detailed study of one potential use-case: blood-based diagnosis of leukaemia

Problem well known to contain gene expression signals — question is how to
assess reliability/usefulness of predictors?

Large, multi-site data, total n ~ 12000 samples, p ~ 12000 genes
Joint with Schultze lab



Cross-sampling to test generalization

samples
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Accuracy (%)

Dataset 2:
AML vs. all samples
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The diagnostic threshold

Population Disease
population
Diagnostic
threshold .
“screening” con.ﬁrmat?ry
diagnosis

ML methods have low marginal cost =2 opens up possibility of moving
the diagnostic threshold, i.e. invoking predictor earlier

Invoking predictor earlier = larger population “at risk”, lower
prevalence, implications for positive predictive value (PPV)...



Dataset 2:
AML vs. all samples
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 Small gains can mean large differences in PPV, hence depending on
application, may need very good predictors



Technological change

« Data acquisition does not stay fixed over time = biotechnologies
change

e Can “old” results still be used?



Train entirely on one
technology/generation

Test on another, disjoint with
respect to study/technology/
samples/normalization

Covers first and second gen
microarrays and RNA-seq
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Towards scalable causal learning



Causal models in biomedicine

e Scientists (rightly) point out that there is life beyond prediction
* (Can we make this statement precise?

* Yes: point is that some biomedical questions are causal or mechanistic,
cannot be directly addressed by multivariate modelling or prediction

* Causal ideas are needed to scale up molecular study of disease processes

But what is so different about causality?



(possibly latent) sequence
of mechanistic events C
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Issue does not go away asymptotically, not solved by more data
Widespread in high dimensions
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Testing agreement with unseen interventions
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Towards truly scalable causal learning

Casual learning: very hard problem, progress exciting, but existing
approaches do not always scale well in terms of p or human overhead

Recently pursuing new approach, based on causal manifolds

Idea is to bypass graphical models whilst learning asymmetric
relationships at scale

Some examples using large scale experimental data...



Causal manifold learning
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* Extensive yeast data, p=50, tested against experimentally-verified causal relationships
e Significantly outperforms several existing approaches
e Ongoing: scaling and testing on human-genome-wide scale problems



Causality and prediction



Causality and prediction

Different problems, often confused in
medical research

Predictive or multivariate tools do not in
general work for causal learning

But equally mechanistic insights may not be
very relevant for prediction!

Example, go back to leukaemia data....

Include/entirely exclude known causal
drivers... 2 known disease drivers not
needed for prediction
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Machine learning question:
@ Is Root Cause RC guaranteed to be a
better predictor of Y than e.g. side effects {SE;}?
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Effect/output



The prediction paradox

In real-world systems — with measurement noise, nontrivial correlation
structure etc. — not guaranteed that true model class is best predictor

Composing mechanistic models across scales may not work, end-to-end input-
output mapping may be more effective

Real-world examples: cancer prediction, speech recognition (Jelinek: “Anytime
a linguist leaves the group the recognition rate goes up”), and more

Implications:

- Be clear about nature of task!

- For prediction, more/better data and good regularization are key




ML and medicine: where are we going?



Where are we going?

ML and Al methods solve decision problems using data, and ML and
statistical concepts allow objective assessment of performance

Decision problems are ubiquitous in medicine - what would a truly ML-
assisted hospital or healthcare system look like?

* Data-driven decisions, empirical assessment of both artificial and
human intelligence based decision processes

* Redefine diseases, identify subgroups, direct therapy

* Allow systems-level optimization



Where are we going?

 What would truly ML-assisted biological research look like?

* Near-automated data collection

* lterative, near-automated experimental design/active/reinforcement
learning

e Systematic, empirical link to translational goals

Claim: we are currently far away from what
could be achieved even with current technology!




(wikipedia)

(nobelprize.org)

You can see the computer age everywhere
but in the productivity statistics (Solow, 1987)



ML/AI as “general purpose” technologies

ML and Al methods solve decision problems using data =2 this is
extraordinarily general

Some economists consider ML/AIl as (potentially) a GPT

Some characteristics:
* Scalable, low marginal cost 2 expands scope of what’s possible
* Potential to change entire workflows or even systems

 BUT: seeing the gains may require many changes at once (so-called
“complementary innovations”)



Why don’t we have data-driven medicine yet?

Why aren’t we further along the road to truly data-driven medicine?

Is this a specific case of the Solow paradox?

|dea is that precisely because big advances require coupled changes, lags can
be long. Borne out by economic history (see e.g. Brynjolfsson et al., 2017)

Implication: collectively need to work not only on primary
innovations, but on all the things needed to take advantage of them




95

T T T T T T T T T T T T T T T T
V Australia —==UN
90 ¢ Iceland } —~ World Bank
O Japan ) %-; Olshansky et al.
B The Netherlands ' 2l P EN Olshansky et al
85 - A New Zealand non-Maori :: o Coalé Coalé & Guo
& Norway M World Bank, UN
80 L * Sweden —_ gpurgleois-Pichat, UN
() & Switzerland > Boutgeois-Pichat
i l UN, Frejka
g
F= 75
oy
Dubli
§ 70 Dﬂbl:z & Lotka
3]
]
o
S 65 Dublin
L
=
60
55
50
T i S [ T T R R R B B
1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040

Year (Oedden & Vaupel, 2002)

Can ML/AIl/genomics/phenotyping contribute to keeping
this success story going?




