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•  Where	
  we	
  stand:	
  what’s	
  changed	
  in	
  recent	
  years	
  and	
  some	
  
snapshots	
  of	
  recent	
  work	
  in	
  predic7on	
  and	
  causal	
  learning	
  

•  Where	
  we’re	
  going:	
  how	
  will	
  things	
  look	
  in	
  the	
  future?	
  Why	
  
aren’t	
  we	
  further	
  ahead	
  already?	
  

ML	
  &	
  medicine	
  



•  Last	
  ~15	
  years,	
  major	
  developments	
  in	
  understanding	
  of:	
  

•  RegularizaMon	
  and	
  high-­‐dimensional	
  learning	
  

•  Highly	
  flexible,	
  data-­‐adapMve	
  models	
  

•  ComputaMonally	
  feasible	
  learning	
  schemes	
  

•  Hardware	
  and	
  associated	
  libraries	
  

Where	
  we	
  stand:	
  	
  
the	
  high-­‐dimensional	
  revoluMon	
  

Drama7c	
  change	
  
in	
  how	
  we	
  view	
  
high-­‐dimensional	
  
data	
  and	
  complex	
  

models	
  



•  Up	
  to	
  30,000	
  people	
  
•  Follow-­‐up	
  30	
  years	
  or	
  more	
  
•  Deep	
  phenotyping	
  
•  Mul7ple	
  modali7es	
  

Where	
  we	
  stand:	
  scale	
  up	
  of	
  	
  
phenotyping/data	
  acquisiMon	
  



•  Two	
  broad	
  kinds	
  of	
  ques7ons/tasks:	
  

(1)	
  “Predic7ve”.	
  Can	
  be	
  framed	
  in	
  terms	
  of	
  minimizing	
  some	
  kind	
  of	
  expected	
  
loss,	
  typically	
  supervised	
  learning	
  set-­‐up.	
  	
  
Examples:	
  diagnosis,	
  prognosis,	
  “theranosMcs”,	
  some	
  pre-­‐processing…	
  
(2)	
  “Causal”.	
  Goal	
  is	
  to	
  guide	
  new	
  intervenMons.	
  
Examples:	
  idenMfying	
  new	
  therapies,	
  aeMology,	
  preventaMve	
  factors	
  …	
  
	
  

•  Depends	
  on	
  not	
  only	
  the	
  quesMon	
  (“will	
  treatment	
  A	
  work	
  for	
  paMent	
  X”)	
  but	
  
the	
  data	
  context	
  

•  Current/emerging	
  biotechnological	
  and	
  data	
  science	
  tools	
  offer	
  promise	
  of	
  
major	
  changes	
  in	
  both	
  areas	
  

Two	
  kinds	
  of	
  quesMons	
  



Predic7on	
  in	
  medicine	
  



•  Many	
  medical	
  tasks	
  are	
  fundamentally	
  staMsMcal	
  decision	
  problems,	
  
including:	
  

•  Diagnosis	
  

•  Prognosis	
  

•  TheranosMcs	
  

•  With	
  appropriate	
  data,	
  all	
  can	
  be	
  viewed	
  as	
  supervised	
  learning	
  
problems,	
  with	
  different	
  Xs	
  and	
  Ys	
  

PredicMon	
  in	
  medicine	
  



•  Medical	
  applicaMons	
  of	
  supervised	
  learning	
  have	
  some	
  key	
  features:	
  
•  Heterogeneity	
  (within	
  study)	
  

•  Batch-­‐	
  and	
  populaMon-­‐type	
  effects	
  and	
  generalizability	
  

•  MulM-­‐modality	
  

•  High-­‐dimensionality,	
  weak	
  first-­‐principles	
  informaMon	
  

•  Bayes’	
  risk	
  not	
  known	
  in	
  advance	
  –	
  always	
  an	
  empirical	
  quesMon	
  

•  Ethical	
  quesMons	
  

Why	
  predicMon	
  in	
  medicine	
  is	
  different	
  



•  Joint	
  Lasso	
  (Dondelinger	
  &	
  SM,	
  Biosta*s*cs,	
  2018),	
  
augments	
  classical	
  lasso	
  penalty	
  with	
  between-­‐group	
  
terms	
  that	
  allow	
  for	
  joint	
  learning	
  

•  Can	
  offer	
  gains	
  in	
  predicMon,	
  also	
  quite	
  different	
  
sparsity	
  pakerns	
  

Heterogeneity:	
  joint	
  learning	
  over	
  subtypes	
  

High-dimensional regression over disease subgroups 11

Fig. 2. Alzheimers disease prediction results, ADNI data. Left panel: Box plots showing difference in RMSE of joint
lasso with different fusion penalties compared with the pooled linear regression model (higher values indicate better
performance by the joint lasso). [Subgroup-wise analysis performed less well than pooled and is not shown; boxplots
are over 10-fold cross-validation.] Right panel: Scatter plots show predicted and observed 24-month slopes for each
of the standard and joint lasso regression models. All predictions were obtained via 10-fold cross-validation.

distance between the means of each subgroup (in the space of genetic and clinical variables). Weighting
did not appear to improve performance.

Figure 2 (right) shows scatter plots of predicted MMSE slopes versus the true slopes. The predictions
were obtained in a held-out fashion via 10-fold cross-validation (CV), as were the RMSE and Pearson
correlations shown. We see that predicted slopes from the ℓ1 approach better match the observed slopes,
with the large improvement in Pearson correlation mostly driven by a few outliers in AD and LMCI.
Overall the joint lasso improves on the pooled and group-wise approaches.

We further used the estimates of the effect sizes for the SNP data to perform a pathway enrichment
analysis using the KEGG database (Kanehisa and Goto, 2000). The results are presented in Figure 1 of
the supplementary material available at Biostatistics online. We show that increased fusion allows for
the identification of common enriched pathways among the subgroups that would not be identified in a
group-wise approach.

Figure 3 shows a comparison of the estimated regression coefficients themselves. The subgroup-wise
approach is much sparser than the other methods, likely due to the fact that it must operate entirely
separately on each (relatively small-sample) subgroup. In addition to loss of prediction power given finite
training samples, this is another drawback of the group-wise approach, which is otherwise likely better
specified than simple pooling. The pooled approach finds more influential variables but obviously there
can be no subgroup-specificity. The joint lasso selects more variables than the subgroup-wise analysis,
but there are many instances of subgroup-specificity in the estimates. The ℓ1 fusion penalty seems to have
allowed for more differences between the subgroups than the ℓ2 penalty, with several instances where only
one subgroup contains a non-zero coefficient. This likely explains the better performance on some of the
outliers in AD and LMCI.

5. ALS: PREDICTION OF DISEASE PROGRESSION

ALS is an incurable neurodegenerative disease that can lead to death within three to four years of onset.
However, about ten percent of patients survive more than 10 years. Prediction of disease progression
remains an open question. We use data from the PROACT database, specifically data that were used in the
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Fig. 3. Alzheimer’s disease data, estimated regression coefficients. Heatmap showing estimated regression coefficients
for a representative subsample of the SNPs. Absolute coefficients are thresholded at e−2 to improve readability.

2015 DREAM ALS Stratification Prize4Life Challenge (data were retrieved from the PROACT database
on June 22, 2015). As above, our aim is not to propose a solution to the prediction problem per se but
rather to provide a case study exploring the use of the joint lasso in a moderate-dimensional, clinical data
setting. In contrast to the Alzheimer’s example above, here the data are less high-dimensional and the
subgrouping less clear cut (see below).

The data consist of observations from n = 2393 patients. Each patient was enrolled in a clinical
trial and followed up for a minimum of 12 months after the start of the trial. Disease progression is
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•  Scalable	
  Bayesian	
  regression	
  (Perrakis	
  &	
  SM,	
  JCGS,	
  to	
  appear),	
  allows	
  for	
  mulMple	
  
modes	
  with	
  high	
  total	
  dimension	
  

•  Example	
  from	
  mulM-­‐modal	
  Alzheimers’	
  predicMon	
  

High-­‐dimensional,	
  mulM-­‐modal	
  data	
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Figure 5: Alzheimer’s disease case study, predictive performance. Correlations between pre-
dictions and held-out test data from 10 random splits with ntrain = 500 and ntest = 259 under
SBR, SSBR and cSSBR using the ML (left) and PM (right) penalty estimates.

We consider three data sources: (1) clinical (CL) data consisting of pCL = 12 features
(including, among others, diagnosis at baseline, Apolipoprotein E status, gender, age, years of
education); (2) structural magnetic resonance imaging (MRI) data consisting of pMRI = 929
features; and (3) genetic data in the form of SNP data, consisting of pSNP ⇡ 7.3⇥106 features
(this is the number of SNPs available after excluding those with zero variance across subjects
and those with more than 10% missing entries). We apply the proposed methods to these
data, treating the three data types (1)-(3) as sources.

The aim is to consider a real-world application with data sources of widely di↵ering
dimensionality and to investigate whether adding the complex MRI and genetic data to
the clinical covariates can improve predictive ability. We emphasize that the goals of the
present paper are mainly methodological and that the results we present at this stage should
be regarded as illustrative of the capabilities of the methods rather than as candidate AD
predictors for practical use.

5.2 Results

Figure 5 shows results using SBR with ML and PM estimators (we omit CV) applied to CL
only, CL and MRI and finally all of the data (CL, MRI and SNP). For the latter case we also
show results using SSBR and cSSBR with fn = log(n). Predictive performance is quantified
via the correlation between predicted and observed values in held-out test data. The boxplots
show the results of 10 random train/test splits (with ntrain = 500, ntest = 259 in each split)
annotated with the number of variables with non-zero coe�cients after fitting the models in
each case.
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•  Detailed	
  study	
  of	
  one	
  potenMal	
  use-­‐case:	
  blood-­‐based	
  diagnosis	
  of	
  leukaemia	
  

•  Problem	
  well	
  known	
  to	
  contain	
  gene	
  expression	
  signals	
  –	
  quesMon	
  is	
  how	
  to	
  
assess	
  reliability/usefulness	
  of	
  predictors?	
  

•  Large,	
  mulM-­‐site	
  data,	
  total	
  n	
  ~	
  12000	
  samples,	
  p	
  ~	
  12000	
  genes	
  	
  

•  Joint	
  with	
  Schultze	
  lab	
  

Risk	
  esMmaMon	
  in	
  pracMce	
  



Cross-­‐sampling	
  to	
  test	
  generalizaMon	
  

(Warnat-­‐Herresthal,	
  Perrakis	
  et	
  al.,	
  2019)	
  



(differen*al	
  
diagnosis)	
  



•  ML	
  methods	
  have	
  low	
  marginal	
  cost	
  à	
  opens	
  up	
  possibility	
  of	
  moving	
  
the	
  diagnosMc	
  threshold,	
  i.e.	
  invoking	
  predictor	
  earlier	
  

•  Invoking	
  predictor	
  earlier	
  à	
  larger	
  populaMon	
  “at	
  risk”,	
  lower	
  
prevalence,	
  implicaMons	
  for	
  posiMve	
  predicMve	
  value	
  (PPV)…	
  

The	
  diagnosMc	
  threshold	
  

Popula7on	
   Disease	
  
popula7on	
  

Diagnos7c	
  	
  
threshold	
  

“screening”	
   confirmatory	
  
diagnosis	
  



•  Small	
  gains	
  can	
  mean	
  large	
  differences	
  in	
  PPV,	
  hence	
  depending	
  on	
  
applicaMon,	
  may	
  need	
  very	
  good	
  predictors	
  



•  Data	
  acquisiMon	
  does	
  not	
  stay	
  fixed	
  over	
  Mme	
  à	
  biotechnologies	
  
change	
  

•  Can	
  “old”	
  results	
  sMll	
  be	
  used?	
  

Technological	
  change	
  



•  Train	
  enMrely	
  on	
  one	
  
technology/generaMon	
  

•  Test	
  on	
  another,	
  disjoint	
  with	
  
respect	
  to	
  study/technology/
samples/normalizaMon	
  

•  Covers	
  first	
  and	
  second	
  gen	
  
microarrays	
  and	
  RNA-­‐seq	
  

Gen1	
  à	
  Gen2	
  

Gen2	
  à	
  Gen3	
  

Gen1	
  à	
  Gen3	
  



Towards	
  scalable	
  causal	
  learning	
  



•  ScienMsts	
  (rightly)	
  point	
  out	
  that	
  there	
  is	
  life	
  beyond	
  predicMon	
  

•  Can	
  we	
  make	
  this	
  statement	
  precise?	
  

•  Yes:	
  point	
  is	
  that	
  some	
  biomedical	
  quesMons	
  are	
  causal	
  or	
  mechanis*c,	
  
cannot	
  be	
  directly	
  addressed	
  by	
  mulMvariate	
  modelling	
  or	
  predicMon	
  

•  Causal	
  ideas	
  are	
  needed	
  to	
  scale	
  up	
  molecular	
  study	
  of	
  disease	
  processes	
  

	
  

But	
  what	
  is	
  so	
  different	
  about	
  causality?	
  

Causal	
  models	
  in	
  biomedicine	
  



A	
  

B	
   C	
  

(Unseen)	
  

B	
   C	
  

Issue	
  does	
  not	
  go	
  away	
  asympto7cally,	
  not	
  solved	
  by	
  more	
  data	
  
Widespread	
  in	
  high	
  dimensions	
  

B

C

Xn,p

X1, X2, . . . , Xp

fG,✓

⇡

f✓

R(f) = E[L(f(X), Y )]

Rn,✓̂(f) = E[L(f✓̂(Dn)
(X), Y )]

Dn = (xi, yi)i=1...n

1

no	
  sequence	
  of	
  	
  
mechanis*c	
  events	
  	
  
linking	
  B	
  and	
  C	
  

(possibly	
  latent)	
  sequence	
  	
  
of	
  mechanis*c	
  events	
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It remains unclear whether causal, rather than merely 
correlational, relationships in molecular networks can be 
inferred in complex biological settings. Here we describe  
the HPN-DREAM network inference challenge, which focused  
on learning causal influences in signaling networks.  
We used phosphoprotein data from cancer cell lines as well 
as in silico data from a nonlinear dynamical model. Using the 
phosphoprotein data, we scored more than 2,000 networks 
submitted by challenge participants. The networks spanned 
32 biological contexts and were scored in terms of causal 
validity with respect to unseen interventional data. A number 
of approaches were effective, and incorporating known biology 
was generally advantageous. Additional sub-challenges 
considered time-course prediction and visualization. Our results 
suggest that learning causal relationships may be feasible 
in complex settings such as disease states. Furthermore, our 
scoring approach provides a practical way to empirically assess 
inferred molecular networks in a causal sense.

Molecular networks are central to biological function, and the 
data-driven learning of regulatory connections in molecular  
networks has long been a key topic in computational biology1–6. 
An emerging notion is that networks describing a certain bio-
logical process (e.g., signal transduction or gene regulation) may 
depend on biological contexts such as cell type, tissue type and 
disease state7,8. This has motivated efforts to elucidate networks 
that are specific to such contexts9–14. In disease settings, networks 
specific to disease contexts could improve understanding of the 
underlying biology and potentially be exploited to inform rational 
therapeutic interventions.

In this study we considered inference of causal molecular net-
works, focusing specifically on signaling downstream of receptor 
tyrosine kinases. We define edges in causal molecular networks 
(‘causal edges’) as directed links between nodes in which inhibi-
tion of the parent node can lead to a change in the abundance 
of the child node (Fig. 1a), either by direct interaction or via 
unmeasured intermediate nodes (Fig. 1b). Such edges may be  
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assessment through a community-based effort
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ABSTRACT

Motivation: Protein signaling networks play a key role in cellular func-

tion, and their dysregulation is central to many diseases, including

cancer. To shed light on signaling network topology in specific con-

texts, such as cancer, requires interrogation of multiple proteins

through time and statistical approaches to make inferences regarding

network structure.

Results: In this study, we use dynamic Bayesian networks to make

inferences regarding network structure and thereby generate testable

hypotheses. We incorporate existing biology using informative net-

work priors, weighted objectively by an empirical Bayes approach,

and exploit a connection between variable selection and network in-

ference to enable exact calculation of posterior probabilities of inter-

est. The approach is computationally efficient and essentially free of

user-set tuning parameters. Results on data where the true, underlying

network is known place the approach favorably relative to existing

approaches. We apply these methods to reverse-phase protein

array time-course data from a breast cancer cell line (MDA-MB-468)

to predict signaling links that we independently validate using targeted

inhibition. The methods proposed offer a general approach by which

to elucidate molecular networks specific to biological context, includ-

ing, but not limited to, human cancers.
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1 INTRODUCTION

Protein signaling plays a central role in diverse cellular functions,
and aberrations in signaling are implicated in almost every aspect
of cancer biology. Indeed, an emerging literature suggests that
signaling networks may be ‘rewired’ in specific contexts, includ-
ing cancer (Lee et al., 2012; Pawson and Warner, 2007). That is,

the network may differ in a cancer cell compared with a normal
cell, for example due to genetic alterations. Yet the manner in
which genomic alterations in specific cancers are manifested at
the level of signaling networks is not currently well understood.
Elucidating signaling networks in a data-driven manner, spe-

cific to a context of interest (such as a cell line or tissue type),
requires the ability to probe post-translational modification
states in multiple proteins through time and across samples.
However, proteomic analyses on this scale remain challenging.
At the same time, the modeling of signaling connectivity poses

statistical challenges. Noise, both intrinsic and experimental, is
ubiquitous in this setting and network components may interact
in a complex, non-linear manner. Candidate networks may differ
with respect to model dimension, which in turn means that ana-
lyses that do not account for this run the risk of preferring net-
works that are over-complex, yet not predictive. This makes the
trade-off between fit-to-data and model parsimony a crucial one
in network modeling.
In this article, we present a data-driven approach to the char-

acterization of context-specific signaling networks (Fig. 1). We
exploit reverse-phase protein array technology (Tibes et al., 2006)
to interrogate dynamic signaling responses in a defined set of 20
phospho-proteins. We use directed graphical models known as
dynamic Bayesian networks (DBNs) (Friedman et al., 1998;
Murphy, 2002), to probabilistically describe relationships
between variables. DBNs have previously been applied to gene
expression data for inference of gene regulatory networks
(Husmeier, 2003; Rau et al., 2010), but to the best of our know-
ledge have not been applied to inference of protein signaling
networks. Static Bayesian networks (BNs) have previously
been employed to infer both protein signaling networks
(Ciaccio et al., 2010; Mukherjee and Speed, 2008; Sachs et al.,
2005) and gene regulatory networks (Friedman et al., 2000), but
unlike DBNs, do not incorporate an explicit time element.
We perform inference regarding network topology within a

Bayesian framework, with existing signaling biology incorpo-
rated through an informative prior distribution on networks
(following Werhli and Husmeier (2007); Mukherjee and Speed
(2008), see Fig. 1). Model averaging over network structures is*To whom correspondence should be addressed.
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Abstract

This paper considers inference of causal structure in a class of graphical models called
conditional DAGs. These are directed acyclic graph (DAG) models with two kinds of
variables, primary and secondary. The secondary variables are used to aid in the estimation
of the structure of causal relationships between the primary variables. We prove that,
under certain assumptions, such causal structure is identifiable from the joint observational
distribution of the primary and secondary variables. We give causal semantics for the model
class, put forward a score-based approach for estimation and establish consistency results.
Empirical results demonstrate gains compared with formulations that treat all variables
on an equal footing, or that ignore secondary variables. The methodology is motivated
by applications in biology that involve multiple data types and is illustrated here using
simulated data and in an analysis of molecular data from the Cancer Genome Atlas.
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Variables, Data Integration

1. Introduction

This paper considers learning causal structure among a set of primary variables (Yi)i2V ,
using additional secondary variables (Xi)i2W to aid in estimation. The primary variables are
those of direct scientific interest while the secondary variables are variables that are known
to influence the primary variables, but whose mutual relationships are not of immediate
interest and perhaps not amenable to estimation using the available data. As we discuss
further below, the primary/secondary distinction is common in biostatistical applications
and is often dealt with in an ad hoc manner, for example by leaving some relationships
or edges implicit in causal diagrams. Our aim is to define a class of graphical models for
this setting and to clarify the conditions under which secondary variables can aid in causal
estimation. We focus on causal estimation in the sense of estimation of the presence or
absence of edges in the causal graph rather than estimation of quantitative causal e↵ects.
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INFERRING NETWORK STRUCTURE FROM INTERVENTIONAL
TIME-COURSE EXPERIMENTS
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Graphical models are widely used to study biological networks.
Interventions on network nodes are an important feature of many
experimental designs for the study of biological networks. In this pa-
per we put forward a causal variant of dynamic Bayesian networks
(DBNs) for the purpose of modeling time-course data with interven-
tions. The models inherit the simplicity and computational efficiency
of DBNs but allow interventional data to be integrated into network
inference. We show empirical results, on both simulated and experi-
mental data, that demonstrate the need to appropriately handle in-
terventions when interventions form part of the design.

1. Introduction. Network inference approaches are widely used to study
biological networks, including gene regulatory and signaling networks. Since
processes underlying such networks are dynamical in nature, time-course
data can help to elucidate regulatory interplay. Network inference methods
for time-course data have been investigated in the literature, with contribu-
tions including (among many others) Husmeier (2003), Bansal, Gatta and
di Bernardo (2006), Hill et al. (2012). Scalable assays spanning multiple
molecular variables continue to advance and network inference applied to
such data offers the potential to provide biological insights over many vari-
ables at once. Inferred networks can be used to generate testable hypotheses
that are context specific in the sense of reflecting regulatory events in the
specific cells under study [Maher (2012), Hill et al. (2012)]. In disease biology,
such context-specific networks can be used to shed light on disease-specific

Received July 2013; revised December 2014.
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those of direct scientific interest while the secondary variables are variables that are known
to influence the primary variables, but whose mutual relationships are not of immediate
interest and perhaps not amenable to estimation using the available data. As we discuss
further below, the primary/secondary distinction is common in biostatistical applications
and is often dealt with in an ad hoc manner, for example by leaving some relationships
or edges implicit in causal diagrams. Our aim is to define a class of graphical models for
this setting and to clarify the conditions under which secondary variables can aid in causal
estimation. We focus on causal estimation in the sense of estimation of the presence or
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ABSTRACT

Motivation: Networks are widely used as structural summaries of bio-

chemical systems. Statistical estimation of networks is usually based

on linear or discrete models. However, the dynamics of biochemical

systems are generally non-linear, suggesting that suitable non-linear

formulations may offer gains with respect to causal network inference

and aid in associated prediction problems.

Results: We present a general framework for network inference and

dynamical prediction using time course data that is rooted in non-

linear biochemical kinetics. This is achieved by considering a dynam-

ical system based on a chemical reaction graph with associated

kinetic parameters. Both the graph and kinetic parameters are treated

as unknown; inference is carried out within a Bayesian framework.

This allows prediction of dynamical behavior even when the underlying

reaction graph itself is unknown or uncertain. Results, based on (i) data

simulated from a mechanistic model of mitogen-activated protein

kinase signaling and (ii) phosphoproteomic data from cancer cell

lines, demonstrate that non-linear formulations can yield gains in

causal network inference and permit dynamical prediction and uncer-

tainty quantification in the challenging setting where the reaction graph

is unknown.

Availability and implementation: MATLAB R2014a software is avail-

able to download from warwick.ac.uk/chrisoates.

Contact: c.oates@warwick.ac.uk or sach@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Statistical network inference techniques are widely used in the
analysis of multivariate biochemical data (Ellis and Wong, 2008;
Sachs et al., 2005). These techniques aim to make inferences re-
garding a network N whose vertices are identified with biomole-
cular components (e.g. genes or proteins) and edges with (direct
or indirect) regulatory interplay between those components.
Network inference methods are typically rooted in linear or

discrete models whose statistical and computational advantages
facilitate exploration of large spaces of networks (e.g. Ellis and
Wong, 2008; Maathuis et al., 2009; Werhli et al., 2006). On the
other hand, when the network topology is known, non-linear
ordinary differential equations (ODEs) are widely used to
model biochemical dynamics (Chen et al., 2009; Kholodenko,
2006). The intermediate case where ODE models are used to
select between candidate networks has received less attention.

We propose a general framework called ‘Chemical Model
Averaging’ (CheMA) that uses biochemical ODE models to
carry out both network inference and dynamical prediction. In
summary, we consider a dynamical system dX=dt=fGðX; !Þ
where the state vector X contains the abundances of molecular
species, G is a chemical reaction graph that characterizes reac-
tions in the system, fG is a kinetic model that depends onG, and !
collects together all unknown kinetic parameters. A causal net-
work N is obtained as a coarse summary N(G) of the reaction
graph G in which each chemical species appears as a single node,
and directed edges indicate that the parent is involved in chem-
ical reaction(s), which have the child as product (we make these
notions precise below). Given time course data D consisting of
noisy measurements of X, we carry out inference and prediction
within a Bayesian framework. In particular, we treat G itself as
unknown and make inference concerning it using the posterior
distribution,

pðGjDÞ / pðGÞ
Z

pðDj!;GÞpð!jGÞd!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
marginal likelihood pðDjGÞ

ð1Þ

where the marginal likelihood pðDjGÞ captures how well the
chemical reaction graph G describes data D, taking into account
both parameter uncertainty and model complexity and pð!jGÞ is
a prior density over the kinetic parameters. In contrast to linear
or discrete models that are motivated by tractability, our likeli-
hood pðDj!;GÞ depends on (richer) reaction graphs G and their
associated kinetics.
This article makes three contributions: (i) A general frame-

work for joint network learning and dynamical prediction
using ODE models, (ii) a specific implementation (‘CheMA
1.0’), rooted in Michaelis–Menten kinetics, that uses
Metropolis-within-Gibbs sampling to allow Bayesian inference
at feasible computational cost and (iii) an empirical investigation,
using both simulated and experimental time course data, of the
performance of CheMA 1.0 relative to several existing
approaches for network inference and dynamical prediction.
The statistical connection between linear ODEs and network

inference using linear models has been discussed in Oates and
Mukherjee (2012) and exploited in Bansal et al. (2006), Gardner
et al. (2003). Several approaches based on non-linear ODEs have
been proposed, including €Aij€o and L€ahdesm€aki (2010); Honkela
et al. (2010); Nachman et al. (2004); Nelander et al. (2008). This
article extends these ideas by formulating a Bayesian approach to
both network inference and dynamical prediction that is rooted
in chemical kinetics. Bayesian model selection based on non-
linear ODEs has been shown to be a promising strategy for*To whom correspondence should be addressed.
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SUMMARY

Signaling networks downstream of receptor tyrosine
kinases are among the most extensively studied bio-
logical networks, but new approaches are needed
to elucidate causal relationships between network
components and understand how such relation-
ships are influenced by biological context and dis-
ease. Here, we investigate the context specificity of
signaling networks within a causal conceptual frame-
work using reverse-phase protein array time-course
assays and network analysis approaches. We focus
on a well-defined set of signaling proteins profiled
under inhibition with five kinase inhibitors in 32 con-
texts: four breast cancer cell lines (MCF7, UACC812,
BT20, and BT549) under eight stimulus conditions.
The data, spanning multiple pathways and com-
prising !70,000 phosphoprotein and !260,000 pro-
tein measurements, provide a wealth of testable,
context-specific hypotheses, several of which we
experimentally validate. Furthermore, the data pro-
vide a unique resource for computational methods
development, permitting empirical assessment of
causal network learning in a complex, mammalian
setting.

INTRODUCTION

The complexity of mammalian receptor tyrosine kinase (RTK)
signaling continues to pose challenges for the understanding

of physiological processes and aberrations that are relevant
to disease. Networks, comprising nodes and linking directed
edges, are widely used to summarize and reason about
signaling. Obviously, signaling systems depend on the concen-
tration and localization of their component molecules, so
signaling events may be influenced by genetic and epigenetic
context (Saez-Rodriguez et al., 2011; Good et al., 2009; Zalatan
et al., 2012). In disease biology, and cancer in particular, an
improved understanding of signaling in specific contexts may
have implications for precision medicine by helping to explain
variation in disease phenotypes or therapeutic response.
Genomic heterogeneity in disease has been well studied,

notably in cancer, and heterogeneity is also manifested at the
level of differential expression of components of signaling path-
ways downstream of RTKs (Akbani et al., 2014; Gerlinger and
Swanton, 2010; Nickel et al., 2012; Szerlip et al., 2012). However,
differences in average protein abundance (as captured in differ-
ential expression or gene set analyses) are conceptually distinct
from differences in the edge structure of signaling networks, with
the latter implying a change in the ability of nodes to causally in-
fluence each other. Causal relationships are also fundamentally
distinct from statistical correlations: if there is a causal edge
from node A to node B, then the abundance of B may be
changed by inhibition of A, but A and B can be correlated with
no causal edge linking them (see below for an illustrative
example). For this reason, standard concepts from multivariate
statistics (that in turn underpin many network analyses in bioin-
formatics) may not be sufficient for causal analyses (Pearl, 2009).
Canonical signaling pathways and networks (as described, for

example, in textbooks and online resources) typically summarize
evidence from multiple experiments, conducted in different cell
types and growth conditions, and therefore, such networks are
not specific to a particular context. Many well-known links in

Cell Systems 4, 73–83, January 25, 2017 ª 2016 The Authors. Published by Elsevier Inc. 73
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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■ An analysis of causal network inference  

■ Lattice light sheet-PAINT imaging of thick specimens   

■ HomoFRET based sensors for NADP+ 

■ Membrane protein-ligand binding detected by MS 

■ Measuring activity in multiple brain regions
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approaches	
  do	
  not	
  always	
  scale	
  well	
  in	
  terms	
  of	
  p	
  or	
  human	
  overhead	
  

•  Recently	
  pursuing	
  new	
  approach,	
  based	
  on	
  causal	
  manifolds	
  

•  Idea	
  is	
  to	
  bypass	
  graphical	
  models	
  whilst	
  learning	
  asymmetric	
  
relaMonships	
  at	
  scale	
  

•  Some	
  examples	
  using	
  large	
  scale	
  experimental	
  data…	
  



Causal Learning via Manifold Regularization

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

n train = 200 n train = 500 n train = 1000

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

ρ

AU
C

Method
●

●

●

●

●

●

MRCL
Pearson

Kendall
Lasso

IDA
k−NN

Figure 1: Results for dataset D1 (yeast data), random sampling. Area under the ROC curve
(AUC; with respect to causal relationships determined from unseen interventional
data), as a function of the fraction ⇢ of labels available (labels were sampled at
random). Results are shown for three training data sample sizes ntrain. Results
are mean values over 25 iterations and error bars indicate standard error of the
mean. Additional results for the PC algorithm appear in Appendix C (see text
for details).

rows whose labels are provided to MRCL. The same data was also provided as input to the
other approaches, including in dataset D for MRCL. This means the data matrices di↵er
from those above, with sample size dependent on ⇢, and for MRCL, D now includes data
that was used to obtain background information � (train/test validity is preserved since
it remains the case that all testing is done with respect to entirely unseen interventions).
Results appear in Figure 3, with PC and GIES shown as a points on the ROC plane. MRCL
appears to o↵er an improvement relative to the other methods (see also the Discussion).
Note that GIES is not directly applicable to the random sampling setting above since it
requires the interventional data with respect to all other variables (and not just a subset
thereof).

3.3 Dataset D2: Protein Time-Course Data

Data. The data consisted of protein measurements for p = 35 proteins measured at seven
time points in four di↵erent ‘cell lines’ (BT20, BT549, MCF7 and UACC812; these are
laboratory models of human cancer) and under eight growth conditions. The proteins under
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•  Extensive	
  yeast	
  data,	
  p=50,	
  tested	
  against	
  experimentally-­‐verified	
  causal	
  relaMonships	
  
•  Significantly	
  outperforms	
  several	
  exisMng	
  approaches	
  
•  Ongoing:	
  scaling	
  and	
  tesMng	
  on	
  human-­‐genome-­‐wide	
  scale	
  problems	
  

(Hill	
  et	
  al.,	
  arXiv:1612.05678	
  [stat.ML])	
  

Causal	
  manifold	
  learning	
  



Causality	
  and	
  predic7on	
  



•  Different	
  problems,	
  oten	
  confused	
  in	
  
medical	
  research	
  

•  PredicMve	
  or	
  mulMvariate	
  tools	
  do	
  not	
  in	
  
general	
  work	
  for	
  causal	
  learning	
  

•  But	
  equally	
  mechanisMc	
  insights	
  may	
  not	
  be	
  
very	
  relevant	
  for	
  predicMon!	
  

•  Example,	
  go	
  back	
  to	
  leukaemia	
  data….	
  

•  Include/enMrely	
  exclude	
  known	
  causal	
  
drivers…	
  à	
  known	
  disease	
  drivers	
  not	
  
needed	
  for	
  predicMon	
  

Causality	
  and	
  predicMon	
  



RC	
  

X1	
  

X2	
  

Y	
  

SE1	
   SE2	
   SEp	
  

Xm	
  

…	
  

Machine	
  learning	
  ques7on:	
  
	
   	
  Is	
  Root	
  Cause	
  RC	
  guaranteed	
  to	
  be	
  a	
  	
  

	
  beTer	
  predictor	
  of	
  Y	
  than	
  e.g.	
  side	
  effects	
  {SEj}?	
  

“Root	
  cause”	
  

Effect/output	
  

“Side	
  effects”	
  



•  In	
  real-­‐world	
  systems	
  –	
  with	
  measurement	
  noise,	
  nontrivial	
  correlaMon	
  
structure	
  etc.	
  –	
  	
  not	
  guaranteed	
  that	
  true	
  model	
  class	
  is	
  best	
  predictor	
  	
  

•  Composing	
  mechanisMc	
  models	
  across	
  scales	
  may	
  not	
  work,	
  end-­‐to-­‐end	
  input-­‐
output	
  mapping	
  may	
  be	
  more	
  effecMve	
  

•  Real-­‐world	
  examples:	
  cancer	
  predicMon,	
  speech	
  recogniMon	
  (Jelinek:	
  “AnyMme	
  
a	
  linguist	
  leaves	
  the	
  group	
  the	
  recogniMon	
  rate	
  goes	
  up”),	
  and	
  more	
  

The	
  predicMon	
  paradox	
  

Implica7ons:	
  
-­‐	
  Be	
  clear	
  about	
  nature	
  of	
  task!	
  	
  
-­‐	
  For	
  predicMon,	
  more/beker	
  data	
  and	
  good	
  regularizaMon	
  are	
  key	
  



ML	
  and	
  medicine:	
  where	
  are	
  we	
  going?	
  



•  ML	
  and	
  AI	
  methods	
  solve	
  decision	
  problems	
  using	
  data,	
  and	
  ML	
  and	
  
staMsMcal	
  concepts	
  allow	
  objecMve	
  assessment	
  of	
  performance	
  

•  Decision	
  problems	
  are	
  ubiquitous	
  in	
  medicine	
  à	
  what	
  would	
  a	
  truly	
  ML-­‐
assisted	
  hospital	
  or	
  healthcare	
  system	
  look	
  like?	
  

•  Data-­‐driven	
  decisions,	
  empirical	
  assessment	
  of	
  both	
  arMficial	
  and	
  
human	
  intelligence	
  based	
  decision	
  processes	
  

•  Redefine	
  diseases,	
  idenMfy	
  subgroups,	
  direct	
  therapy	
  

•  Allow	
  systems-­‐level	
  op7miza7on	
  

Where	
  are	
  we	
  going?	
  



•  What	
  would	
  truly	
  ML-­‐assisted	
  biological	
  research	
  look	
  like?	
  

•  Near-­‐automated	
  data	
  collecMon	
  

•  IteraMve,	
  near-­‐automated	
  experimental	
  design/acMve/reinforcement	
  
learning	
  

•  SystemaMc,	
  empirical	
  link	
  to	
  translaMonal	
  goals	
  

	
  
Claim:	
  we	
  are	
  currently	
  far	
  away	
  from	
  what	
  	
  

could	
  be	
  achieved	
  even	
  with	
  current	
  technology!	
  

Where	
  are	
  we	
  going?	
  



(nobelprize.org)	
  

You	
  can	
  see	
  the	
  computer	
  age	
  everywhere	
  
but	
  in	
  the	
  produc7vity	
  sta7s7cs	
  (Solow,	
  1987)	
  

(wikipedia)	
  



•  ML	
  and	
  AI	
  methods	
  solve	
  decision	
  problems	
  using	
  data	
  à	
  this	
  is	
  
extraordinarily	
  general	
  	
  

•  Some	
  economists	
  consider	
  ML/AI	
  as	
  (potenMally)	
  a	
  GPT	
  
•  Some	
  characterisMcs:	
  

•  Scalable,	
  low	
  marginal	
  cost	
  à	
  expands	
  scope	
  of	
  what’s	
  possible	
  
•  PotenMal	
  to	
  change	
  enMre	
  workflows	
  or	
  even	
  systems	
  
•  BUT:	
  seeing	
  the	
  gains	
  may	
  require	
  many	
  changes	
  at	
  once	
  (so-­‐called	
  

“complementary	
  innovaMons”)	
  
	
  

ML/AI	
  as	
  “general	
  purpose”	
  technologies	
  



•  Why	
  aren’t	
  we	
  further	
  along	
  the	
  road	
  to	
  truly	
  data-­‐driven	
  medicine?	
  

•  Is	
  this	
  a	
  specific	
  case	
  of	
  the	
  Solow	
  paradox?	
  

•  Idea	
  is	
  that	
  precisely	
  because	
  big	
  advances	
  require	
  coupled	
  changes,	
  lags	
  can	
  
be	
  long.	
  Borne	
  out	
  by	
  economic	
  history	
  (see	
  e.g.	
  Brynjolfsson	
  et	
  al.,	
  2017)	
  

Why	
  don’t	
  we	
  have	
  data-­‐driven	
  medicine	
  yet?	
  

Implica7on:	
  collec7vely	
  need	
  to	
  work	
  not	
  only	
  on	
  primary	
  
innova7ons,	
  but	
  on	
  all	
  the	
  things	
  needed	
  to	
  take	
  advantage	
  of	
  them	
  



Can	
  ML/AI/genomics/phenotyping	
  contribute	
  to	
  keeping	
  
this	
  success	
  story	
  going?	
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Is life expectancy approaching its limit?
Many—including individuals planning
their retirement and officials responsi-

ble for health and social policy—believe it
is. The evidence suggests otherwise.

Consider first an astonishing fact. Fe-
male life expectancy in the record-holding
country has risen for 160 years at a steady
pace of almost 3 months per year [Fig. 1

and suppl. table 1
(1)]. In 1840 the
record was held by
Swedish women,
who lived on aver-

age a little more than 45 years. Among na-
tions today, the longest expectation of
life—almost 85 years—is enjoyed by
Japanese women. The four-decade increase
in life expectancy in 16 decades is so ex-
traordinarily linear [r2 = 0.992; also see
suppl. figs. 1 to 5 (1)] that it may be the
most remarkable regularity of mass endeav-
or ever observed. Record life expectancy
has also risen linearly for men (r2 = 0.980),
albeit more slowly (slope = 0.222): the gap
between female and male levels has grown
from 2 to 6 years (suppl. fig. 2).

In addition to forewarning any looming
limit to the expectation of life, trends in
best-practice life expectancy provide infor-
mation about the performance of coun-
tries. The gap between the record and the
national level is a measure of how much
better a country might do at current states
of knowledge and demonstrated practice.
Although rapid progress in catch-up peri-
ods typically is followed by a slower rise,
life-expectancy trajectories do not appear
to be approaching a maximum (Fig. 2). 

The linear climb of record life ex-
pectancy suggests that reductions in mor-
tality should not be seen as a disconnected
sequence of unrepeatable revolutions but
rather as a regular stream of continuing
progress (2, 3). Mortality improvements re-
sult from the intricate interplay of advances

in income, salubrity, nutrition, education,
sanitation, and medicine, with the mix
varying over age, period, cohort, place, and
disease (4). Before 1950, most of the gain
in life expectancy was due to large reduc-
tions in death rates at younger ages. In the
second half of the 20th century, improve-
ments in survival after age 65 propelled the
rise in the length of people’s lives. For
Japanese females, remaining life expectan-
cy at age 65 grew from 13 years in 1950 to
22 years today, and the chance of surviving
from 65 to 100 soared from less than 1 in
1000 to 1 in 20 (1). The details are compli-
cated but the resultant straight line of life-
expectancy increase is simple.

World life expectancy more than dou-
bled over the past two centuries, from
roughly 25 years to about 65 for men and
70 for women (4). This transformation of
the duration of life greatly enhanced the
quantity and quality of people’s lives. It
fueled enormous increases in economic

output and in population size, including an
explosion in the number of the elderly (5,
6). Although students of mortality eventu-
ally recognized the reality of improve-
ments in survival, they blindly clung to the
ancient notion that under favorable condi-
tions the typical human has a characteris-
tic life-span. As the expectation of life
rose higher and higher, experts were un-
able to imagine its rising much further.
They envisioned various biological barri-
ers and practical impediments. The notion
of a fixed life-span evolved into a belief in
a looming limit to life expectancy.

Ultimate Expectations of Life
In 1928, Louis Dublin quantified this con-
sensus (7). Using U.S. life tables as a
guide, he estimated the lowest level to
which the death rate in each age group
could possibly be reduced. His calcula-
tions were made “in the light of present
knowledge and without intervention of
radical innovations or fantastic evolution-
ary change in our physiological make-up,
such as we have no reason to assume.” His
“hypothetical table promised an ultimate
figure of 64.75 years” for the expectation
of life both for males and for females. At
the time, U.S. life expectancy was about
57 years. Because Dublin did not have da-
ta for New Zealand, he did not realize that
his ceiling had been pierced by women
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Broken Limits to
Life Expectancy
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Fig. 1. Record female life expectancy from 1840 to the present [suppl. table 2 (1)]. The linear-re-
gression trend is depicted by a bold black line (slope = 0.243) and the extrapolated trend by a
dashed gray line. The horizontal black lines show asserted ceilings on life expectancy, with a short
vertical line indicating the year of publication (suppl. table 1). The dashed red lines denote projec-
tions of female life expectancy in Japan published by the United Nations in 1986, 1999, and 2001
(1): It is encouraging that the U.N. altered its projection so radically between 1999 and 2001.
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